GLOBAL SOLUTIONS IN ENGINEERING

Power Performance Testing

Why Power Perfomance Testing?

- Identification of turbine performance issues
 - Operational issues
 - Turbine losses
- Standardized way to compare measured power curve to warranted power curve
- Project wide performance
- Higher value for resale or project financing

Outline: Critical Issues

- → Following the IEC 61400-12-1 Standard
- Proper tower positioning and instrumentation
- Data filtering techniques
- → Measurement uncertainty
- → Turbine Supply Agreement Conditions

IEC 61400-12-1 Testing Standard: Tower Siting

- → Within 2 to 4 rotor diameters
- → 2.5 rotor diameters optimum
- Prevailing wind directions

IEC 61400-12-1 Testing Standard: Terrain Criteria

Criterion	Description*	Distance [†]	Sector (deg)
1	Maximum slope of best fit plane < 3%	< 2L	360^{0}
2	Maximum terrain variation from best fit plane < 0.04(H+D)	< 2L	360^{0}
3	Maximum slope of best fit plane < 5%	2L – 4L	Measurement sector
4	Maximum terrain variation from best fit plane < 0.08(H+D)	2L – 4L	Measurement sector
5	Steepest slope maximum < 10%	2L – 4L	Outside measurement sector
6	Maximum slope of best fit plane < 10%	4L – 8L	Measurement sector
7	Maximum terrain variation from best fit plane < 0.13(H+D)	4L – 8L	Measurement sector

.....

IEC 61400-12-1 Testing Standard: Site Calibration

→ In complex terrain

IEC 61400-12-1 Testing Standard: Measurement Sector

Flow distortion relevant up to 20 rotor diameters

IEC 61400-12-1 Testing Standard: Sensor Accuracy

Instrument	Specification
Wind Speed Anomometer	Class 1.7A or better for Standard tests
Wind Speed Anemometer	Class 2.5B or 1.7S or better for tests requiring a site calibration
Wind Direction Sensor	Orientation uncertainty should be less than 5°
Power Transducer	Class 0.5 or better based upon standard IEC 60688
Data Agguigition System	Data acquisition system must be calibrated onsite. The system must be designed such that uncertainty
Data Acquisition System	should be negligible compared to the uncertainty of the sensors

Cup Anemometer (Requirement IEC 61400-12-1)	Class A (1.7)	Class B (2.5)
NRG max 40 Risø P2546 Vaisala WAA151 Vector L100 Thies "First Class" Thies "First Class" Advanced	2.4 1.9 1.7 1.8 1.5	7.7 8.0 11.1 4.5 2.9 3.0

~ CENIMAD

→ Over and above the IEC standard to minimize uncertainty

Instrument	Height (m)	Model No.	Mounting
Anemometer (2)	80	Thies First Class Advanced 4.3351.00	goal post boom
, ,			
Sonic Anemometer (1)	78.3	Thies 4.3830.21.310	post mounted horizontal boom
Wind Vane (1)	78.3	Thies 4.3150.10	post mounted horizontal boom
Temp/Humidity Probe (1)	77	RM Young 41382, 41003	mounted on tower
Barometric Pressure	77	RM Young 61302	mounted on tower
Anemometer (1)	59	Thies First Class Advanced 4.3351.00	tilt down boom
Wind Vane (1)	59	Thies 4.3150.10	tilt down boom
Anemometer (2)	39	Thies First Class Advanced 4.3351.00	tilt down booms (2)
Temperature Sensor (1)	2	RM Young 41342, 41003	mounted on tower
Anemometer (1)	10	Thies First Class Advanced 4.3351.00	tilt down boom
, ,			
Precipitation Sensor (1)	2	Thies 5.4103.20.041	short custom boom

TOWER NAME: TOWER IB
TOWER HEIGHT 77.724M
TOWER FACE WIDTH 475.2mm

Index	Part No.	Description	Qty.
\Box	ANEMOM_ULTRA_THEIS	THEIS ULTRA SONIC 3D ANEMOMETER	
	ANOMOM_THIES	THIES IST CLASS ADVANCED ANEMOMETER	2
	BARO_PRESS	BAROMETRIC PRESS SENSOR	
	GBM-1510	I.7M BOOM THEIS ULTASONIC 3D ANEMOMETER	
	GBM-1511	I.7M BOOM THIES WDIR TRNS+WTRNS IST CL	
6	GBM-1716	GOAL POST ASS'Y	
7	TMP_HMD_PROBE	TEMP + TEMP/RH SENSOR RM YOUNG 41003	- 1
8	WIND_VANE	WIND VANE THEIS IST CLASS	
	•		

- Sufficient separation between sensors and tower
- → Clean configuration

Tower Orientation

Data Filtering: Turbine Operational Envelope

- Inflow Angle (8 degrees)
- → Shear (0.2)
- → Turbulence Levels (IEC Standard Class)
- → Temperature
- Precipitation
- → Blade Soiling
- → Icing
- → Turbine status codes

Data Collection

- → 1-second data
- Detailed turbine status data
- Thorough data monitoring program (calibration and test)

Measurement Uncertainty: Anemometer Accuracy

 Conditions specified in anemometer documentation

Mean flow	Valid turbulence	
inclination	intensity range	
[deg]	Ti min [%]	Ti max [%]
-20	n.f.	n.f.
-15	11	25
-10	19	25
-5	23	25
-4 -3 -2 -1	>0	7
-3	>0	10
-2	>0	11.5
-1	>0	12.5
0	>0	13
1	>0	13
1 2 3 4	>0	13
3	>0	12.5
4	5	9.5
5	19.5	25
10	15	25
15	9.5	25
20	n.f	n.f.

negative angle: inflow from above

Class 1 conditions for the Vector A 100L2

Turbine Supply Agreement

- IEC Standard is not comprehensive and is open to interpretation
- Deviations are common and an open line of communication should be established
- Treatment of Uncertainty
- Filtering conditions should be specified
- → Special tower siting conditions
- Data treatment
- → Representativeness of nominated turbines
- Representative wind speed
- Process for implementing test results established
- Methods of calculating availability prescribed

Conclusions

- Following IEC standard
- Instrumentation and Tower positioning
- → Data collection
- Data filtering conditions: minimizing uncertainty
- Turbine supply agreement considerations

Errol Halberg P.Eng.

errol.halberg@genivar.com - 403.248.9463

