2012 AWEA Wind Resource & Project Energy Assessment Seminar

Monetizing Wind Resource Assessment: Bank Survey

Errol Halberg, P.Eng. September 14, 2012

OBJECTIVES

- If I spend money on reducing project uncertainty, will it improve the value of the project?
- → Quantify how reductions in uncertainty levels increase IRR & NPV
- → What other factors impact the success of financing?
 - IRR: Internal Rate of Return, NPV: Net Present Value

REVIEW OF PRIOR WORK

- Daniela Shapiro (AWEA 2011) showed that lower uncertainty results in lower equity requirements and better returns for the developer
 - IRR improves as uncertainty decreases
 - There is a ceiling for improvements in IRR at a P99/P50 ratio of ~0.75

P99/P50 ratio

SURVEY OVERVIEW

- → Wanted to know:
 - How does financial modeling vary within the finance industry?
 - What does it mean to developers?
- Conducted a survey:
 - Large lenders and tax equity banks, developers (anonymous)
 - Combined portfolio in the tens of thousands of MW, hundreds of projects
- → Applied the survey results to a case study (100 MW project)

CASE STUDY: THE "TYPICAL" PROJECT

- → Based on survey responses, we made a "typical" project
- → Project Size: 100 MW
- → Capacity Factor: 40%
- → Power Purchase Agreement: \$47/MWh escalating at 2.0%/yr.
- → PTC Eligible
- → 10-year standard uncertainty cases: 5%, 7%, 9%, 11%, 13%
- → (1-year standard uncertainty: 7.6%, 9.0%, 10.6%, 12.4%, 14.2%)

FINANCING STRUCTURES: DEBT

- Leveraged financing means the project costs are paid for by equity and debt
 - Equity: money out of the developer's pockets
 - Debt: money borrowed from a lender (e.g. bank)
- Debt Service Coverage Ratio:

Cash available for debt servicing
Interest + principal payments

- 1.0 is bare minimum: higher means less risk of defaulting on debt
- Available cash depends on income (which depends on production)

SURVEY RESPONSES: CASE STUDY

→ Debt service coverage ratio: 1.0 for P99; 1.4 for P50

NPV versus Uncertainty (via Debt Sizing)

......

SURVEY RESPONSES: CASE STUDY

→ Debt service coverage ratio: 1.0 for P99; 1.4 for P50

Combined Debt Sizing Results

Combined Debt Sizing Results

→ Alternates: 1.45 for P50;1.0 for P90; 1.0 for P99 (10-year); 1.5 for P50; incrementing DSCR

DEBT SIZING IMPACT

→ What's the hook?

- Significant \$\$ left on the table (\$0.75 M / %)
- In most cases uncertainty can be easily reduced below 12% (e.g., remote sensing/met tower installation)
- Relative cost for improving uncertainty is low (\$40 to \$50 k for a met tower, \$30 to \$40 k for a remote sensing campaign, \$80 to \$120 k for a tall tower)

FINANCING STRUCTURES: TAX EQUITY

- → Production tax credit (PTC): a tax credit for producing the wind energy
- If the developer pays less in taxes than the value of the PTC, money is left on the table
- → A tax equity provider pays more in taxes than the value of the PTC
- → The tax equity provider owns the project until the "flip date": the date when a specified IRR is achieved for the tax equity provider
- → The developer starts earning a greater proportion of revenue after the flip date, so the sooner the better (improved developer IRR)

SURVEY RESULTS: TAX EQUITY SENSITIVITIES

- Tax equity is structured for a specific flip date and IRR
 - For example, the tax equity provider can require an IRR of 7.75% with a target 'flip' at 9 years, or 8% at 10 years (or better)
- → A sensitivity test is calculated for different production confidence levels (e.g., P75, P90, P99)
 - If actual production is lower than predicted, the flip date is delayed
 - Banks have different thresholds of sensitivity: 14, 15, up to 18 years
 - An extreme case: a flip date of 20 years the structure will not work

THE COST OF UNCERTAINTY: CASE STUDY

→ What are our IRR & NPV for production at P50 levels?

P50 Scenario with investor IRR @ 7.75%

Flip in Year:	9				
	Pre-tax	After-tax			
Developer IRR	10.40%	8.55%			
NPV	\$ 10,780,212	\$ 4,014,121			

*NPV Results assume 8.5% discount rate

- What would happen if the project under-produced?
- → The banks do a sensitivity test

THE COST OF UNCERTAINTY

The higher the uncertainty, the bigger the cost of under-production

P75 Production Realized (10- Year Standard Uncertainty)

		IRR		NPV*	
Uncertainty	Flip Date	Pre-Tax	After-Tax	Pre-Tax	After-Tax
5%	13	8.81%	7.19%	\$ 1,611,562	\$ (2,633,845)
7%	14	8.10%	6.59%	\$ (2,047,155)	\$ (5,309,679)
9%	14	7.96%	6.47%	\$ (2,725,384)	\$ (5,856,648)
11%	15	7.14%	5.78%	\$ (6,638,539)	\$ (8,718,392)
13%	16	6.46%	5.20%	\$ (9,522,903)	\$ (10,880,788)

^{*}NPV Results assume 8.5% discount rate

THE COST OF UNCERTAINTY

What's the impact?

- → The higher the uncertainty, the more severe the downside risk
 - → If P75 is realized, ~\$1.4 M decrease in NPV / % uncertainty
 - → Investments to reduce uncertainty are low compared to the impact on project (\$40 k met tower, \$30 to \$40 k RS, \$80 to \$120 k tall tower)
- Other risk factors limiting project completion are a bigger consideration for decisions regarding wind resource assessment investment

SURVEY RESULTS: SUCCESS IN FINANCING

- → Banks do an internal due diligence
- Confidence in the wind resource report
 - What is the main driver of uncertainty? Can it be mitigated?
- → Equipment: Turbine reputation and history
- Economic strength
 - Project size (economy of scale versus too large)
 - Reputation of the sponsor
 - Strength of the market
- → Contracts
 - Who is the off-taker, credit strength, PPA terms
- Project specifics
 - Transmission, curtailment, location of the project

CONCLUSIONS

- → For leveraged projects, a large monetary incentive exists for getting uncertainty below 12%
- → For all finance structures, the lower the uncertainty, the lower the downside risk
- The cost to reduce uncertainty is small compared to its impact on NPV for risk scenarios

CONCLUSIONS (CONTINUED)

- Securing financing depends on:
 - Project uncertainty
 - Equipment
 - Sponsor reputation
 - Strength of market
 - PPA and contract terms
 - Project specifics (other risks)

THANK YOU

Jeff Vergouwen, Acuity Projects Inc.

Erik Hale, EDF Renewable Energy

Robert Campbell, GENIVAR

