AWEA Wind Resource & Project Energy Assessment Seminar 2014-12-03

Minimizing Portfolio Uncertainty

Targeted Diversification of Projects

Outline

- 1. Portfolio theory
- 2. Wind resource correlation via reanalysis data
- 3. Production data from active wind farms
- 4. Portfolio uncertainty
 North American case
 studies
- Merchant market case study

Modern Portfolio Theory

- Lower overall risk by combining individual wind farms
- → Assumes normal distribution
- The portfolio risk can be separated into two components

$$\sigma_{portfolio}^{2} = \sum_{i=1}^{N} \sigma_{i}^{2} + \sum_{\substack{i=1 \ j \neq i}}^{N} \sum_{j=1}^{N} \sigma_{i} \cdot \sigma_{j} \cdot R_{ij}$$

Independent Correlated Component Component

 $\rightarrow R_{ij}$ = Correlation between projects

Correlation of Wind Resource

- Different components of uncertainty may be correlated
 - Losses
 - Turbine performance
 - Wind resource
- Focus on correlation of wind resource
 - Typically main driver of 1year uncertainty
- → ERA re-analysis data (20 years)
 - Correlation of annual wind speed data calculated acrossNorth America

$$\sigma_{portfolio}^{2} = \sum_{i=1}^{N} \sigma_{i}^{2} + \sum_{\substack{i=1 \ j \neq i}}^{N} \sum_{j=1}^{N} \sigma_{i} \cdot \sigma_{j} \cdot R_{ij}$$

Correlation of Wind Resource

Annual Wind Speed Correlation (R) Map - Great Plains

- → Correlation map shows strength of correlation to specific location
 - Strong correlation (red areas)
 - Negative correlation (blue areas)
- → Distinct wind speed patterns along geographic lines
 - E.g., Rocky Mountains
- → Stronger correlation North/South than East/West

Production Data

- → Monthly Production Data
 - EIA (USA)
 - IESO (Ontario)
 - AESO (Alberta)
- → Filter by:
 - Period longer than 48 months
 - Location and name plate capacity is (NPC) known
 - NPC > 9 MW
- → Filtered to:
 - 313 Wind Farms
 - NPC 27.4 GW

Correlation of Production

- EIA Annual Production Correlation
 - Calculated between all 313 wind farms
 - Years with flagged data removed
 - Annual production synchronized between all wind farms
 - Correlation calculated for the overlapping period of record
- Significant amount of projects are moderately correlated
 - Correlation map can be used to find locations with weak correlation

Production Data

- Portfolio of 3 wind farms
 - West, Great Plains, East
 - 5 years of production data
 - Distance = 4100 miles
- → Similar sized wind farms
 - 100 MW Facility
- → Wind farms chosen based on the re-analysis correlation map
 - Annual EIA production data also shows poor correlation between wind farms
 - Reduced 1-year uncertainty may improve financing potential due to diversification of risk

North American Case Studies

- → The same 3 projects as previous production example
 - Project uncertainty based on calculated
 production inter-annual variation for each region
- → Overall uncertainty based on analysis correlation
 - $\sigma_{\text{portfolio}} = 5.2\%$ Vs. $\sigma_{\text{portfolio}} = 7.25\%$ assuming a strong correlation (R2 = 1)
 - P95 increases by 3.8% compared to a strong correlation case
- → Validated using EIA production correlation
 - $\sigma_{\text{portfolio}} = 5.7\%$

Re-analysis Annual Wind Speed Correlation - R

Wind Farm	West	Great Plains	East
West	-	0.1	0.2
Great Plains	0.1 (0.3)		0.5
East	0.2 (0.4)	0.5 (0.6)	-

() - Correlation based on EIA invoiced production

North American Case Studies

Annual Wind Speed Correlation (R) Map - Great Plains

→ Portfolio 1

- 3 x Great Plains ($\sigma = 7.25\%$)
- Distance = 808 miles
- Average Correlation = 0.81
- 1-year $\sigma_{\text{portfolio}1} = 6.8\%$

→ Portfolio 2

- 3 x Great Plains ($\sigma = 7.25\%$)
- Distance = 781 miles
- Average Correlation = 0.55
- 1-year $\sigma_{\text{portfolio}2} = 6.1\%$

$$\sigma_{\text{portfolio2}} \downarrow = P_{95} \uparrow 1.3\% \text{ Vs. } \sigma_{\text{portfolio2}}$$

North American Case Studies

- → Alberta
- → Portfolio 1
 - 2 x Central
 - 1 x Southern
- → Portfolio 2
 - 1 x Central
 - 2 x Southern
- → Difference in uncertainty
 - 8.1% vs. 8.3%
- Strong correlation of annual wind speed throughout Alberta
- Not a significant improvement to uncertainty but ...

Annual Wind Speed Correlation (R) Map
- Southern Alberta

Correlation - Averaging Period

Monthly Wind Speed Correlation (R) Map - Southern Alberta

- → Correlation of monthly wind speed is not consistent across Alberta
 - Central sites are less correlated to the southern portion
- → Alberta is a **merchant market** with high concentration of wind farms in the south.
 - Wind energy is a price-taker
- → Power Pool Analysis of Alberta
 - Based on actual production data and historical power pool prices
- → Difference to Average Pool Price
 - Central Alberta ~20%
 - Southern Alberta ~40%

Merchant Market

Monthly Wind Speed Correlation (R) Map - Southern Alberta

- Correlation map of monthly data better suited for price analysis
- → Clustering of wind farms becoming more prevalent
- → Low correlation to the areas of high wind penetration is ideal
- Correlation map can be used to find regions with low correlation to high penetration areas
 - Increased monthly revenue due to lower discount
- Weak correlation of monthly production between portfolio wind farms can also smooth monthly revenue

THANK YOU

