Wind Farm Production Variation

A Case Study of Net Production Variation of Alberta, Ontario and the USA

Outline

- 1. What is production variation?
- 2. Why is production variation important?
- 3. North American Case Study
- 4. Summary and Conclusions

What is Production Variation?

Variation in <u>net energy production</u>

- Resource (wind speed, air density)
- Losses
- Excludes start-up period
- Power Curve Production sensitivity
- → Inter-Annual Variation (IAV)
- → Inter-Monthly Variation (IMV)
 - Seasonal patterns

IMV

Why is Production Variation Important?

→ Inter-annual Variation (IAV)

- Used in production uncertainty calculations
- IAV is the largest contributor to the 1-year uncertainty
- The smaller the P50 to P90 spread, the lower financing costs
- IAV can be mitigated through project design

→ Inter-monthly Variation (IMV)

- Invoices are monthly
- Defines variation of revenue → probability of default
- Helps to define realistic production expectations

North American Case Study: Monthly Net Invoiced

- → Study Population
 - USA¹, Alberta² & Ontario³
 - 851 Wind Farms
 - Records start 2001
- → Filter by:
 - Period longer than 48 months
 - Location and NPC known
 - NPC > 9 MW
- → Filtered to:
 - 344 Wind Farms
 - NPC 30.5 GW

- 1. West Coast (WA,OR) 25, 2.9 GW
- 2. Foothills (AB,ID,MT) 17, 1.0 GW
- 3. Great Plains (ND,SD,MN) 56, 4.0 GW
- 4. Great Lakes (ON,WI,MI,OH) 18, 1.7 GW
- 5. East Coast (PA,NY,NH,VT,ME,MT) 32, 1.9 GW

¹ EIA, 2014/09 www.eia.gov/electricity/data/eia923/ ² AESO, 2014/08 http://ets.aeso.ca/ets_web/ ³ IESO, 2014/09 http://www.ieso.ca/

North American Case Study: QC and Prediction

- → Generate reference data set
 - MERRA Ws, Te & Bp
 - Generic power curve, air density corrected
- → Correlate to a reference
 - Identify step jumps and trends
- → Calculate long-term mean
- → Calculate seasonal profile

North American Case Study: Distribution

- → Based on 339 Wind Farms (NPC 30.4 GW)
- \rightarrow Relative: $\frac{Invoiced}{Seasonal\ Trend} \times 100\%$
- → What is the Distribution?
 - Wind resource
 - Losses (icing, availability)
- → Is there a Bias?
 - Worse for IAV than IMV
 - Near normal in tails

Canadian Examples

Ontario

- → 9 Wind Farms (of 25)
- → NPC of 1.13 GW
- \rightarrow IAV = 4.3%
- → Bias more pronounced

Alberta

- → 11 Wind Farms (of 21)
- → NPC of 0.575 GW
- \rightarrow IAV = 8.2%
- → Lots of noise

North American Case Study: IMV

- → Largest IMV calculated on the West Coast (24%)
 - Resource peaks in summer, opposite of all other regions
- → Smallest IMV calculated in the Great Plains and Great Lakes (19%)
- → IMV due to losses was 14% for the East Coast and 10-12% for the other regions.

North American Case Study: IAV

- → IAV differs from IMV, but follows relative trends
 - Great Lakes shows lowest IAV (5.7%)
 - Foothills shows highest IAV (8.8%)
- → Use to inform pre-construction IAV estimates
 - Production sensitivity will influence regional values
 - Variation due to losses are typically significant (3.3%)

North American Case Study: Auto-Correlation

- → Is IMV ⇔ IAV?
 - Only if relative strength of invoiced production is random
- → Calculate auto-correlation
 - Look at both net-invoiced and predicted long-term
 - Offset wind farm production by 1-3 months and calculate correlation
 - Compare correlation to variation → pass or fail
- → Auto-correlation of resource strongest on West Coast
- → Losses can cause auto-correlation

An Example of IAV from IMV

→ If data is not auto-correlated: IMV ⇔ IAV

$$IAV = \frac{IMV}{\sqrt{12}}$$
 e.g., $\frac{22.9\%}{\sqrt{12}} = 6.6\% \sim Measured IAV of 6.9\%$

→ Better input to economic model than P90 Capacity Factor?

North American Case Study: Effect of NPC on IAV

- \rightarrow Predicted IAV ($\sigma_{resource}$) versus Invoiced IAV ($\sigma_{resource}$ + σ_{losses})
 - Predicted IAV not influenced by losses, used as baseline
- → Small wind farms have higher IAV
 - Dedicated staff, if one turbine breaks...
- → Low capacity factor wind farms have high IAV
 - Likely due to high losses → low CF → high IAV

North American Case Study: Effect of COD on IAV

- → IAV has decreased over time
- → Capacity factor has increased over time
- → Production Sensitivity ≈ Capacity Factor
 - As production sensitivity increases, IAV decreases
- → Older projects have more chance for malfunction

Summary

- \rightarrow IAV is comprised of σ_{resource} + σ_{losses} where:
 - IAV is near normally distributed for tails

$$\sigma_{\text{resource}} + \sigma_{\text{losses}} = 5.7-8.8\%$$

$$\sigma_{losses} = -3.3\%$$

→ IMV is near normally distributed for tails

$$\sigma_{\text{resource}} + \sigma_{\text{losses}} = 19-24\%$$

$$-\sigma_{losses} = ~11-14\%$$

- → IAV can be calculated from IMV in many cases
 - West coast is auto-correlated
 - High regional losses leads to auto-correlation

Conclusions

- → IMV and seasonal trend better defines revenue than P50/P90 annual net yield
 - Potential use in economic modelling
 - Better define production expectations for facility management
- → Developers can mitigate production variation by:
 - Lowering production sensitivity (turbine selection)
 - Increasing wind farm size
 - Targeting specific wind regions and/or system grids
 - Portfolio effect (regional diversification)

QUESTIONS?

IAV of Wind Speed Versus Production

→ Production Sensitivity ~ 1.7

Class	%
	1.9
II	1.6
III	1.2

Class	IAV	Scaled 80 m
Predicted Wind Speed	2.3%	_
Class I Production	4.3%	4.3%
Class II Production	3.9%	3.7%
Class III Production	3.3%	2.8%

- → IAV calculated from Wind Speed has some problems:
 - Variation of the distribution of wind speed and air density
 - Effects of the Power Curve
 - Weighting: All Ws>Ws_{rated} = Power_{rated}
 - What is the contribution of Losses to IAV?
- → How do we validate variation of net invoiced production?

